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ABSTRACT 

Several studies have shown that the Poisson-lognormal (PLN) offers a better alternative 

compared to the Poisson-gamma (PG) when data are skewed while the PG is a more 

reliable option otherwise. However, it is not explicitly clear when the analyst needs to 

shift from the PG to the PLN – or vice versa. In addition, so far, the comparison has 

usually been accomplished using the goodness-of-fit statistics or statistical tests. Such 

metrics rarely give any intuitions into why a specific distribution or model is preferred 

over another. This paper addresses these topics by (1) designing characteristics-based 

heuristics to select a distribution between the PG and PLN, and (2) prioritizing the most 

important summary statistics to select a distribution between these two options. The 

results show that the kurtosis and percentage-of-zeros of data are among the most 

important summary statistics needed to distinguish between these two options. 

Keywords: Model Selection, Characteristics Based Heuristics, Classification, Poisson-

gamma, Poisson-lognormal 
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INTRODUCTION 

Crash data modelling plays a pivotal role in most safety analyses or evaluations. Over last 

few decades, safety scientists have placed significant efforts in introducing novel 

distributions or models to study crash data (Lord and Mannering, 2010; Mannering and 

Bhat, 2014). However, among all potential modelling alternatives, the Poisson-gamma 

(PG) (also known as negative binomial) and Poisson-lognormal (PLN) distributions still 

remain as the most popular and commonly used sampling distributions in the eyes of 

safety analysts and practitioners (Lord and Mannering, 2010), mostly due to their 

simplicity. Both of these distributions are classified as a member of the Poisson-mixture 

family distributions, in which the Poisson distribution is mixed with another distribution 

(known as a mixing distribution) to overcome the Poisson limitations in accounting over 

dispersion or heterogeneity in data. In these mixture settings, it is assumed that the 

Poisson parameter is randomly distributed by a logical mixing distribution. In the case of 

the PG mixture, the Poisson parameter is distributed using a gamma distribution, while 

in the case of the PLN distribution, the Poisson parameter is distributed using a lognormal 

distribution.  

Although both are appropriate when data express a sign of over dispersion, each 

of these distributions or models has its own positive and negative traits. As such, 

according to Lord and Mannering (2010), the PLN is more flexible than the PG to handle 

over dispersion and a better option for modelling skewed data. In a more detailed 

examination of these two alternatives, Khazraee, Johnson and Lord (2018) state that the 

thick tail of the lognormal distribution, theoretically, can give the PLN a substantial boost 

when data are characterized by excessive large and/or unusual crash observations. They 

also found that the existing GoF measures cannot adequately select one model over the 

other, although the PLN fits the data better at the tail end of the distribution whereas the 
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PG fits the data better near the zero count data. The comparison of the PG and PLN 

models is not limited to the safety literature. For example, in a research study that was 

conducted to characterize the microbial counts in foods, Gonzaless-Barron and Butler 

(2011) showed that the PLN is a better alternative when data include observations with 

large numbers, while the PG outperforms the PLN for data with small count observations, 

and/or those with larger amount of zero responses.  

Overall, the previous studies indicate that the PLN is a better alternative for data 

with larger skewness, and/or data that involve large count observations but fewer zero 

responses, while the PG is a more suitable option for the opposite circumstances. 

However, it is not explicitly clear when the analyst may need to switch from the PG to 

the PLN - or vice versa- and/or what characteristics should be observed a priori to select 

a logical distribution between these two alternatives. This paper addresses this topic and 

ponders into this issue by providing guidelines and tools (or heuristics, to be exact) to 

select a logical distribution between the PG and PLN distributions, and recognizing the 

most important summary statistics to make a Model Selection decision between these two 

sampling distributions.  

Recently, Shirazi et al. (2017a) introduced a systematic methodology to design 

heuristics to select the ‘most-likely-true’ and logical distribution among potential 

alternative distributions to model count data. The authors demonstrated the application of 

the methodology by designing heuristics to select a model between the negative binomial 

(NB) and negative binomial-Lindley (NB-L) (Lord and Geedipally, 2011; Geedipally, 

Lord, Dhavala 2012; Shirazi et al. 2016a) distributions. The proposed NB vs. NB-L 

heuristics recently has been successfully examined in a study by Shaon et al. (2018). The 

methodology described in Shirazi et al.’s study (2017a) is used as a benchmark to address 



5 
 

our topic. As noted by Shirazi et al. (2017a), when designed, such heuristics have notable 

advantages to typical Model Selection metrics, such as: 

• Unlike the goodness of fit (GoF) metrics or typical statistical tests, these 

heuristics examine the characteristics of data – addressing the classical issue of 

goodness of logic (GoL)1 - for model recommendation. 

• They can be used before fitting the distributions since only the characteristics of 

the data, in terms of the summary statistics, are considered to come up with the 

model recommendation. 

• They can be used as quick characteristics-based guidelines for the safety analysts 

or practitioners to select a model between the potential alternatives. 

• The complexity of the potential alternatives is considered implicitly in such 

Model Selection perspective. 

• They can be used as quick heuristics when the analyst deals with high velocity 

of big data and prompt Model Selection decisions are needed periodically. 

The objectives of this paper consequently are: (1) provide simple guidelines or 

heuristics to select a logical distribution between the PG and PLN sampling distributions, 

given a set of summary statistics of data, and (2) determine and prioritize the most 

important characteristics of data, reflected into the summary statistics, to make a decision 

between these two distributions.  The objectives are accomplished by applying the two-

steps, i.e.: (1) Monte Carlo simulations and (2) Classifications, systematic methodology 

described by Shirazi et al. (2017a). 

 

1 The goodness of logic terminology was first used in the work of Miaou and Lord (2003). The 
term implies that researchers and analysts should not solely select a model over another based 
on goodness of fit measures alone, but that they also need to look at the logic behind the 
selection of the "best model." More specifically, the model should appropriately characterize 
the crash generation process via the selected distribution, the functional form linking the 
number of crashes to the explanatory variables and how it relates to the boundary conditions. 
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MIXED-POISSON FAMILY MODELS 

Both of the PG and PLN distributions are classified as a member of the mixed-Poisson 

family distributions, where the Poisson parameter is mixed with a distribution to 

accommodate the over-dispersed data. The PG and PLN are two common models used to 

analyze crash data in safety literature (Lord and Mannering 2010; Lord and Miranda-

Moreno 2008; Aguero-Valverde and Jovanis 2008; Aguero-Valverde 2013). The 

characteristics of the PG and PLN distributions are described in this section. 

 The probability mass function (pmf) of the Poisson distribution is defined as 

follows:  

Poisson(λ) ≡ P(Y = y| λ) =
λy × e−λ

y!
 (1) 

where the mean (m), variance (VAR) and variance-to-mean ratio (VMR) of the 

observations are equal to: 

  E(y) = m = λ (2a) 

V(y) = VAR = λ (2b) 

VMR(y) = VMR = 1 (2c) 

The PG distribution is a mixture of the Poisson and gamma distributions, which 

can be structured as the following hierarchical representation: 

y| λ~Poisson( λ) (3a) 

 λ|μ,ϕ~gamma(ϕ,
ϕ
 μ

) (3b) 

The above mixture would result in a closed form NB distribution. The pmf of the NB 

distribution is defined as follows: 
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NB(ϕ, μ) ≡ P(Y = y| ϕ, μ) =
Γ(ϕ + y)

Γ(ϕ)Γ(y + 1) �
ϕ

μ + ϕ�
ϕ

�
μ

μ + ϕ�
y

  (4) 

where μ = mean response of observations, and ϕ = inverse dispersion parameter. The 

mean (m), variance (VAR) and variance-to-mean ratio (VMR) of the PG distribution are 

defined as: 

E(y) = mean = μ (5a) 

V(y) = VAR = μ +
μ2

ϕ
 (5b) 

VMR(y) = VMR = 1 +
μ
ϕ

 (5c) 

The PLN distribution is a mixture of the Poisson and lognormal distributions, 

which can be structured as the following hierarchical representation: 

y| λ~Poisson( λ) (6a) 

log ( λ)|υ,σ2~normal(υ,σ2) (6b) 

Note that the mean (μ λ) and variance (V λ) of the lognormal distribution with 

parameters ν,σ2 are equal to: 

E( λ) = μ λ = eν+σ2 (7a) 

Var( λ) = V λ =  
eσ2−1

e2υ+σ2
 (7b) 

Therefore, the mean (m), variance (VAR), and variance-to-mean ratio (VMR) of the PLN 

distribution are defined as: 

E(y) = m = μ λ (8a) 

V(y) = VAR =  μ λ + V λ (8b) 

VMR(y) = VMR =  1 +
V λ

μ λ
 (8c) 
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MODEL SELECTION HEURISTICS  

Shirazi et al. (2017a) documented and discussed a systematic framework to design simple 

characteristics-based heuristics to predict the label of the most-likely-true distribution to 

model the data under analysis. In such perspective, the Model Selection problem is treated 

as a classification problem. The key to this approach are (1) simulating datasets that 

closely represent the population under consideration and recording the summary statistics 

of each dataset, and (2) training a classifier over the summary statistics to learn the 

patterns in the data to discriminate one distribution from another. For more information 

on rationales behind this Model Selection perspective and detailed steps of the 

methodology, the readers are raftered to the work of Shirazi et al. (2017a). 

This section is divided into three parts. First, the detailed steps of the simulation 

design are described. In the second part, a Decision Tree (DT) (Breiman, Friedman and 

Olshen 1984) classifier is used to design simple and straightforward heuristics to select a 

distribution for modelling between the PG and PLN distributions. The results of this 

section can be used as straightforward guidelines to select a logical distribution between 

these two alternatives. In the third part, a Random Forest (RF) (Breiman 2001) classifier 

is trained to design a more accurate Model Selection tool to predict the ‘most-likely-true’ 

distribution between the PG and PLN distributions, as well as prioritizing the key 

summary statistics to discriminate these two distributions.   

Simulation Design 

Although the paper by Shirazi et al. (2017a) documented a framework to design the model 

selection heuristics using the characteristics of the data, this approach requires designing 

a solid simulation protocol that is tailored to the specific comparison that is being studied. 

The simulation protocol, itself, can vary substantially from one comparison to another. It 
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is essential to first make sure that the simulated datasets represent the characteristics of 

the target population, and then ensure that the alternative distributions have fair 

representations among simulated data (Shirazi et al. 2017a). The first concern can be 

addressed by simulating data given the most common range observed in context 

population, in our case, the crash data population. The second concern can be addressed 

by ensuring that some summary statistics (referred to as control factors) are distributed 

similarly among the simulated datasets from alternative distributions (Shirazi et al. 

2017a). In other words, the analyst seeks to discriminate the distributions based on factors 

such as the ‘kurtosis’ and/or ‘skewness’, while the control factors such as the ‘mean’ or 

the ‘VMR’ are distributed similarly among simulated datasets. 

 In our problem design, we ensure that the ‘mean’ and the ‘VMR’ of data are 

uniformly distributed among the generated datasets from both of these distributions, 

simply, by simulating the mean (m) and the VMR from a uniform distribution with a 

range that is the most common observed range in crash data, as shown in Eqs. (9a) and 

(9b)2. 

m~uniform(0.1,20) (9a) 

VMR~uniform(1,25) (9b) 

Next, given Eqs. (5a) and (5c), the parameters of the PG distribution can be estimated as:  

μ = m (10a) 

ϕ =
μ

VMR − 1
 (10b) 

Similarly, given the Eqs. (8a) and (8c), first, we have: 

 

2  We assumed that the mean of crash data varies from 0.1 to 20 in our simulation protocol. It is 
worth pointing out that there are instances that we may have a larger mean for crash data. 
However, in those situations, our analysis showed that the difference between using the 
Poisson-gamma and the Poisson- lognormal would become negligible and both will perform 
similarly when modelling data.  
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μ λ = m (11a) 

V λ = (VMR − 1) × μ λ (11b) 

Then, given the Eqs. (7a) and (7b), the parameters of the PLN distribution can be derived 

as: 

ν = log 

⎝

⎛ μλ2

�V λ + μλ2⎠

⎞ (12a) 

σ =  �log �
V λ

μλ2
+ 1� (12b) 

Now, it is possible to simulate a dataset with a size of n=5,000 from the PG distribution 

given parameters derived in Eq. 10, and from the PLN distribution given the parameters 

derived in Eq. 12. The above procedure can be repeated for N=100,000 iterations, for 

each one of these distributions. Each time, m-types of summary statistics are recorded. 

We used 22 type of summary statistics in our analysis. These summary statistics include 

the mean (µ), variance (𝜎𝜎2), standard deviation (𝜎𝜎), variance-to-mean ratio (VMR), 

coefficient-of-variation (CV), skewness (skew), kurtosis (K), percentage-of-zeros 

(Zeros), quantiles (or percentiles) in 10% increments, the 10-th, 20-th, 30-th and 40-th 

inter-quantiles (or inter-percentiles), and the range (R). 

The detailed steps of the simulation protocol are described as follows: 

Repeat the following steps for N=100,000 iterations:  

1. Simulate the mean (m) and the VMR from the Eqs. (9a) and (9b). 

2. Find the parameters of the PG distribution from the Eqs. (10) and the PLN 

distribution from Eqs. (11) and (12). 

3. Simulate a dataset with a size of ‘n’ given the parameters derived in Step 2, from 

both of the PG and the PLN distributions.  
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4. Record all the 22 types of summary statistics described above for the simulated 

datasets.  

Decision Tree Heuristic 

A Decision Tree classifier was used as a tool to partition the 22-dimensional predictor 

space that is created by the simulated summary statistics and assign a label (either the PG 

or the PLN) to each partition. Fig. 1 shows the outcome of the Decision Tree classifier. 

As shown in Fig. 1, the population kurtosis and the percentage-of-zeros play a substantial 

role in making a decision between the PG and PLN distributions. As seen in this figure, 

overall, the PLN is recommended for situations when data are more skewed but has fewer 

zero responses, while the PG distribution is a better option otherwise; these results 

confirm the trends observed and/or reported in previous studies in the literature (Lord and 

Mannering 2010; Gonzaless-Barron and Butler 2011; Khazraee, Johnson and Lord, 

2018). Unlike previous studies, however, Fig. 1 provides a more perspicuous 

characteristics-based guidance on selecting a sampling distribution between these two 

alternatives. It is worth pointing out that since different types of summary statistics are 

independent of parameters, the same criteria is applicable for other NB parameterizations 

as well. 

< Figure 1 > 

The output of a binary classifier can be either True (T) when it correctly classifies 

the label of the distribution, or False (F) when it misclassifies the label of the correct 

distribution. Let the PLN and PG distributions, respectively, be labelled as the positive 

(P) and negative (N) outputs of the binary classification. These definitions represent a test 

when the analyst assumes the PG distribution as a base model, while he or she seeks to 
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know when a shift to the PLN distribution is recommended. Table 1 shows the confusion 

matrix of the binary classification given such assumptions. 

< Table 1 > 

 The overall misclassification error is equal to 9.68% and the sensitivity [Note: 

Sensitivity=TP/(TP+FN)] and specificity [Note: Specificity=TN/(TN+FP)] of the 

classification are equal to 97.24% and 85.12%, respectively. The sensitivity of the 

classification is very high indicating that when the outcome of the binary classifier is the 

PLN distribution, there is a very high chance that the classifier has correctly detected the 

label of the distribution. However, the specificity of the classification is not as high as its 

sensitivity, meaning that when the outcome of the classifier is the PG distribution, there 

are still some chances that the output label was detected incorrectly. When the output of 

the classifier is the PG distribution, the analyst may consider other tests as well to decide 

between these two distributions and/or can decide to choose an alter tolerance threshold 

to decide between the PG and PLN.  In the next section, we use a Random Forest classifier 

for a more accurate classification. Note that when the sample kurtosis and the percentage-

of-zeros deviate further away from the discriminating threshold, the ‘most-likely-true’ 

label can potentially be selected with greater confidence. Although not reported here, the 

DT heuristic was tested for simulated test data and the misclassification error was less 

than 10% for the test data.  

Random Forest Heuristic 

Although they are easy to interpret and use, decision trees may not be as accurate as other 

classifiers (say Random Forest) and can be non-robust (Hastie, Tibshirani and Friedman 

2001; James et al. 2013). This means that a potential change in data could possibly result 

in altering in the final decision tree. The Random Forest classifier tries to overcome this 



13 
 

issue by building many trees, instead of one, to substantially improve the performance of 

the classification (Hastie, Tibshirani and Friedman 2001; James et al. 2013). As a bagging 

method, the Random Forest classifier avoids over-fitting using a bootstrap technique. In 

that regard, this classifier is a more appropriate alternative comparing to boosting 

classifiers. 

In our Random Forest classification, the number of trees was set to 100. Unlike 

the Decision Tree classification, the outcome of a Random Frost classification cannot be 

shown graphically. However, the trained forest can be recorded and still be used as an 

easy Characteristics-Based Model Selection tool to select a distribution between the PG 

and PLN distributions, without any post-modelling efforts. Table 2 shows the confusion 

matrix of the binary classification between the PG and PLN, based on the results of the 

Random Forest classifier. The misclassification error is equal to 0.01%, and the 

sensitivity and specificity of the classifier are almost equal to 100%. Although not 

reported here, the Random Forest heuristic was tested for simulated test data and the 

misclassification error was less than 1.5% for the test data. 

< Table 2 > 

As a by-product of the Random Forest classifier, the predictors (summary 

statistics) can be ranked by their importance. Fig. 2 and 3 show the importance of the 

summary statistics based on two criteria: (1) mean decrees Deviance Accuracy and (2) 

mean decrease Gini index (Hastie, Tibshirani and Friedman 2001; James et al. 2013). As 

shown in these figures, kurtosis, skewness and the percentage-of-zeros are among the 

most important summary statistics to select a model between the PG and PLN 

distributions. 

< Figure 2 > 
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< Figure 3 > 

 

As a closing note to this section, it is worth pointing out that in scenarios when a 

particular covariate provides an extra variability to the model, this covariate itself can 

also be included in building the heuristics. However, according to Khazraee, Johnson and 

Lord (2018), the selection of distribution itself is also critical for model selection between 

Poisson-gamma and Poisson-lognormal. The heuristics developed in this paper provide 

insightful guidelines on the selection of the sampling distribution. 

APPLICATION OF PROPOSED HEURISTICS TO OBSERVED DATA  

In this section, two datasets are used to evaluate the proposed heuristics.  The first dataset 

includes information related to single-vehicle crashes that occurred on Michigan rural 

two-lane highway in 2006. This dataset was utilized in several previous studies (Qin, Ivan 

and Ravishanker. 2004; Geedipally, Lord and Dhavala. 2013; Shirazi et al. 2016a). The 

dataset includes 33,970 segments, and the mean, variance, VMR, kurtosis, and the 

percentage-of-zeros of data are equal to: 0.68, 3.15, 4.62, 123.6 and 69.7%, respectively. 

The second dataset contains crash data that occurred between 2012 and 2014 on Texas 

urban four-lane arterials. This dataset also has been used in several studies (Lord, 

Geedipally and Shirazi. 2016. Shirazi, Geedipally and Lord. 2017c; Geedipally, Shirazi 

and Lord. 2017) in the past. The dataset includes 4,264 segments, and the mean, variance, 

VMR, kurtosis, and the percentage-of-zeros of data are equal to: 2.26, 45.53, 19.27, 92.8 

and 56.5%, respectively. The detailed summary statistics of the two datasets are shown 

in Table 3. 

< Table 3 > 
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Table 4 and 5, respectively, show the recommended models for the Michigan and 

Texas data based on the proposed heuristics and the log-likelihood metric. While the 

classical metrics require the distributions to be fitted to the data before coming up with 

the model recommendation, the proposed heuristics can be used without any post-

modelling inputs and/or efforts. The decision based on the proposed heuristics solely rely 

on characteristics of data. For both datasets, the PLN distribution is the favoured 

distribution to model data, based on the classical log-likelihood metric and the proposed 

heuristics. Classical metrics, such as the log-likelihood, do not give any intuitions into 

why the PLN is preferred to the PG (addressing the Goodness-of-Logic issue). On the 

other hand, the proposed heuristics come up with the model recommendation by 

considering the characteristics of data; hence, in this case, the analyst can select a more 

logical distribution to model data. For example, a large kurtosis value in both datasets 

plays a substantial role in choosing the PLN over the PG.  It is worth pointing out that 

although the results of the Model Selection based on the proposed heuristics and the 

classic tests are the same for the two examples provided in this paper, this may not be 

generally the case. In addition, factors such as the sample size and unobserved 

heterogeneity could influence model selection decisions.   

< Table 4 > 

< Table 5 > 

SUMMARY AND CONCLUSIONS  

The Poisson-gamma and Poisson-lognormal are the most popular sampling distributions 

used in safety analyses and evaluations as a means to analyse crash data. According to 

the previous research (Khazraee et al, 2018), the selection of a distribution between the 

PG and PLN, itself, is critical for model selection and the subsequent safety studies or 
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analyses. This study investigated, under what circumstances the PLN is preferred over 

the PG, and vice versa, based on characteristics of data, reflected in the summary 

statistics. A decision tree was constructed and proposed as quick guidelines to select a 

distribution between these two alternatives. The kurtosis and percentage-of-zeros were 

the only summary statistics used by the classifier in the decision tree. Although Decision 

Tree classifiers are non-robust and potentially provide different tree splits, the results 

shown in Fig.1 can be used by practitioners as useful guidelines for selecting a sampling 

distribution between the PG and PLN. We used a Random Forest classifier to design a 

more accurate tool to select a distribution between these two options. As a by-product of 

a Random Forest classifier, the summary statistics can be ranked by their importance. 

Among the 22 types of summary statistics used in the analysis, kurtosis, skewness and 

the percentage-of-zeros were found the most important and critical summary statistics to 

select a Model between the PG and PLN. The next step should compare the PLN and NB-

L, to decide when the percentage-of-zeros favours a model over the other. Further 

analysis in context of heuristics is also needed to consider the effect of the sample-size 

(Lord 2006; Shirazi, Lord and Geedipally 2016b; Shirazi, Geedipally and Lord 2017b) 

on proposed heuristics.  
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TABLES 

TABLE 1: PG vs. PLN: Confusion Matrix Based on the Results of the Decision Tree Classifier. 

Predicted 
True 

PLN PG 

PLN 41.50% (TP) 1.18% (FN) 

PG 8.50% (FP) 48.82% (TN) 
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TABLE 2: PG vs. PLN: Confusion Matrix Based on the Results of the Random Forest Classifier. 

Predicted 
True 

PLN PG 

PLN 50.00% (TP) 0.01% (FN) 

PG 0.00% (FP) 49.99% (TN) 
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TABLE 3: Summary Statistics of the Datasets. 

Summary Statistics Michigan Dataset  Texas Dataset 

Mean 0.68 2.36 

Variance 3.15 45.53 

Standard Deviation (Sd.) 1.77 6.75 

Variance-to-Mean-Ratio (VMR) 4.62 19.27 

Coefficient-of-Variation (CV) 2.60 2.86 

Skewness (skew) 7.76 7.92 

Kurtosis (K) 123.59 92.67 

Percentage-of-Zeros (Z) 69.6% 56.5% 

10-th Quantile 0 0 

20-th Quantile 0 0 

30-th Quantile 0 0 

40-th Quantile 0 0 

50-th Quantile (Median) 0 0 

60-th Quantile 0 1 

70-th Quantile 1 1 

80-th Quantile 1 3 

90-th Quantile 2 6 

10-th Inter-Quantile 1 1 

20-th Inter-Quantile 1 1 

30-th Inter-Quantile 1 3 

40-th Inter-Quantile 2 6 

Range 61 120 
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TABLE 4: Model Selection for the Michigan Data. 

Method PG PLN Criteria 
Favored 

Distribution 

Log-Likelihood 

(LL)1 

-36332.85 

(ϕ = 0.30, μ = 0.68) 

-36117.54 

(υ = −1.48,σ = 1.50) 
LLPLN > LLPG PLN 

Decision Tree 

Heuristic 2 

Kurtosis= 123.6  

Zeros=69.7% 

Kurtosis > 73.6 

Zeros < 78.7% 
PLN 

Random Forest 

Heuristic2 
Using All 22 Summary Statistics 

Using the RF 

Heuristic 
PLN 

1Requires fitting the distributions. 
 2 Do not require fitting the distributions 
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TABLE 5: Model Selection for the Texas Data. 

Method PG PLN Criteria 
Favored 

Distribution 

Log-Likelihood 

(LL)1 

-7462.91 

(ϕ = 0.23, μ = 2.36) 

-7432.35 

(υ = −0.82,σ = 1.95) 
LLPLN > LLPG PLN 

Decision Tree 

Heuristic 2 

Kurtosis= 92.8  

Zeros= 56.5% 

Kurtosis > 73.6 

Zeros < 78.7% 
PLN 

Random Forest 

Heuristic2 
Using All 22 Summary Statistics 

Using the RF 

Heuristic 
PLN 

1Requires fitting the distributions. 
 2 Do not require fitting the distributions 
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FIGURES 

 

 

FIGURE 1: Characteristics Based Heuristic to select a Model between the PG and PLN Distributions 

(Tree can be used for data with the characteristics of 0.1 < mean < 20 and 1 < VMR < 25).  
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FIGURE 2: Importance of the Summary Statistics to Select a Distribution between the PG and PLN 

Based on the Mean Decrease Deviance Accuracy Given the Results of the Random Forest Classifier. 
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FIGURE 3: Importance of the Summary Statistics to Select a Distribution between the PG and PLN 

Based on the Mean Decrease Gini, Given the Results of the Random Forest Classifier. 
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